モータ制御のためのTIM/ADC設定(STM32・コード記述編)

前回はCubeMXでの設定をしました。

今回はこちらの設定をCubeMXで吐いたコードを編集します。

①CubeIDEプロジェクトの作成

こちらの手順にしたがい、CubeIDEで開発できる環境を整えてください。
またC++を利用して記述するため、C++に対応できるようにMakefileを編集してください。

編集箇所が多いので、抜けていたり、環境がイタズラしたりと、うまく行かないことがあると思います。
そのようなときのために、編集済み・確認済みのgitを用意しておきましたので、こちらを利用してください。

https://github.com/YutakaNakamura/G431_MC_Proj/tree/LED_UART_Check

②Main.cppを記述
以下のように、int main()を適当に編集します。

int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */
  

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_LPUART1_UART_Init();
  MX_ADC1_Init();
  MX_TIM1_Init();
  MX_ADC2_Init();
  /* USER CODE BEGIN 2 */
  if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1) != HAL_OK)
  {
   Error_Handler();
  }
  if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2) != HAL_OK)
  {
   Error_Handler();
  }
  if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3) != HAL_OK)
  {
   Error_Handler();
  }

  //disableにすれば出力されない
  if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_4) != HAL_OK)
  {
   Error_Handler();
  }

  TIM1 -> PSC = 17000;
  TIM1 -> ARR = 10000;
  TIM1 -> CCR1 = 7500;
  TIM1 -> CCR2 = 5000;
  TIM1 -> CCR3 = 2500;
  TIM1 -> CCR4 = 9990;

  HAL_ADCEx_InjectedStart_IT(&hadc1);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  mySqrt<float> msqrt(0.1f);

  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
	  char buf[] = "USART TEST\r\n";
	  HAL_UART_Transmit(&hlpuart1, (uint8_t*)buf, sizeof(buf), 1000);

	  float sqrt5 = msqrt.Calc(5.0f);
	  int delay = 100 * sqrt5;
	  HAL_Delay(delay);
	  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);
	  HAL_Delay(delay);
	  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
  }
  /* USER CODE END 3 */
}

MX_TIM1_Init();
でCubeMXで指定したタイマの設定がされます。
MX_ADC1_Init();
でCubeMXで指定したADCの設定がされます。

これらは内部でレジスタを設定しています。
Ctrl+関数をクリック してジャンプしていくと、いずれはレジスタを叩いている場所に飛べるはずです。

HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1)
でTIM1のCH1のPWMを出力します。

TIM1 -> PSC = 17000;
TIM1 -> ARR = 10000;
TIM1 -> CCR1 = 7500;
TIM1 -> CCR2 = 5000;
TIM1 -> CCR3 = 2500;
TIM1 -> CCR4 = 9990;
ではレジスタを直叩きします。それぞれの意味は以下の通りです。
プリスケーラを17000 (170MHzのクロックを、10KHzまで分周します)
TIM1のカウンターを10000に設定。(10000でリセットがかかる)
CH1の閾値を7500に設定。
CH2の閾値を5000に設定。
CH3の閾値を2500に設定。
CH4の閾値を9990に設定。

ちなみにこのPWMのDutyを編集するのに、レジスタ直叩きの他に、
  __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 7500);
WRITE_REG(TIM1->CCR1, 7500);
などがありますが、全部同値です。マクロ仲介してわかりにくくなってるだけなので、直叩きしています。
また、HALの構造体を再度宣言して、HAL_TIM_PWM_ConfigChannel()関数を叩く手法もありますが、こちらは処理時間的に勿体ないので使いません。

これをコピペをするだけだと、
mySqrt<float> msqrt(0.1f);の定義で詰まって動かないと思いますが、
class mySqrtの宣言・定義は前回のcppに対応する記事を見てください

②stm32g4xx_it.cを記述
こちらにADCの終了割り込み時の動作を記述します。
別に他の所に関数を書いてもいいのですが、今回はお試しなのでここに全部書いちゃいます。
void ADC1_2_IRQHandler(void)内に書いていきます。
内部でUSARTでの出力処理を行うため、#include “usart.h”が必要になります。

/******************************************************************************/
/* STM32G4xx Peripheral Interrupt Handlers                                    */
/* Add here the Interrupt Handlers for the used peripherals.                  */
/* For the available peripheral interrupt handler names,                      */
/* please refer to the startup file (startup_stm32g4xx.s).                    */
/******************************************************************************/

#include "usart.h"
/**
  * @brief This function handles ADC1 and ADC2 global interrupt.
  */
void ADC1_2_IRQHandler(void)
{
  /* USER CODE BEGIN ADC1_2_IRQn 0 */

	  char buf[] = "■ADC interrupt\r\n";
	  HAL_UART_Transmit(&hlpuart1, (uint8_t*)buf, sizeof(buf), 1000);

	  volatile int adc1 = ADC1 -> JDR1;
	  volatile int adc2 = ADC1 -> JDR2;
	  volatile int adc3 = ADC1 -> JDR3;

	  char str[100] = {0};

	  sprintf(str,"adc1:%d, adc2:%d, adc3:%d\r\n",adc1,adc2,adc3);
	  HAL_UART_Transmit(&hlpuart1, (uint8_t*)str, sizeof(str), 1000);

  /* USER CODE END ADC1_2_IRQn 0 */
  HAL_ADC_IRQHandler(&hadc1);
  HAL_ADC_IRQHandler(&hadc2);
  /* USER CODE BEGIN ADC1_2_IRQn 1 */

  /* USER CODE END ADC1_2_IRQn 1 */
}

ADCの動作が終了したタイミングで、こちらが呼ばれて、USARTでADCの入力値を返します。

volatile int adc1 = ADC1 -> JDR1;
volatile int adc2 = ADC1 -> JDR2;
volatile int adc3 = ADC1 -> JDR3;

 

こちらがADCの値が格納されているレジスタです。
レジスタを叩くときには、最適化を防止するためvolatileをつけることが肝心です。

修正は以上です。
マイコンに書き込んでみると次のようになります。

また、UARTの出力を見てみると、次のようになります。

これらから、目的のタイミングで動作していることがわかりました。
以上で全説明は終了です。

今回作成したものは以下から取得できます。

https://github.com/YutakaNakamura/G431_MC_Proj/tree/LED_UART_Check

モータ制御のためのTIM/ADC設定(STM32・CubeMX編)

①概要

モータ制御をするためには、PWMを出力するだけではなく、ADCで適切なタイミングで状態を読み取る必要があります。
(適当な電圧出力だけでも回りはしますが、”それはモータ制御なのか?…”と問われると違うと思います。)

一例として、以下の画像のようなタイミングで動作させることが、今回の目標です。

画像を説明すると、TIMを利用して、75%,50%,25% DutyのPWMと、100%タイミングで、
ADC用のトリガ信号を出力します。また、このトリガ信号を利用して、ADCを動かしてみます。
“なぜこのタイミングでADCを動作させるか”というと実際の(3シャント方式電流検出の)モータドライバの回路は以下のようになっています。

モータから流れる電流が、橙の丸で囲ったシャント抵抗に流れる電流を測定するには、ローサイド側のMOSFETが下がっている時しか(流れないので)検出できないのです。
そのため、確実にFETがOFFになるタイマ100%時にADCを動作させます。

以下が今回執筆時環境です。

IDE
STM32CubeIDE
Version: 1.2.0
Build: 5034_20200108_0926 (UTC)

CubeMX
Version: 5.4.0

Board
NUCLEO-G431RB

②PWM設定

次のようにPWMを設定します。

TIM1 Mode and Configuration – Mode
Channel1 PWM Generation CH1
Channel2 PWM Generation CH2
Channel3 PWM Generation CH3
Channel4 PWM Generation CH4
と設定していきます。

TIM1 Mode and Configuration – Configuration – Parameter Setting
Counter Setting
  Counter Mode Center Aligned mode 1
Trigger Output(TRGO) Parameters
  Trigger Event Selection TRGO Update Event
  Trigger Event Selection TRGO2 Output Compare(OC4REF)
と設定していきます。

今回は設定しませんでしたが、Prescalerに値を設定するとカウントを分周します。
≒カウント動作が遅くなります。

Counter Period がカウント周期です。
本来はここに10000などの値を設定しますが肝心な箇所なので、
こんなコーダーに任せるよりも自分でソース内に記述したほうがいいよね???
の精神で、今回は後で触ります。

Center Aligned mode1を選ぶことによって、は山のようなカウンタの動作をします。 
(本記事の一番上の画像・Tim Counter参照)

TRGOの設定は、TRGO2にCH4のカウンタ値との比較の出力を出します。
このTRGO2を利用して、今回はADCを動かしていきます。

Break And Dead Time management – BRK Configuration
  設定無し
Break And Dead Time management – BRK2 Configuration
  設定無し
Break And Dead Time management – Output Configuration
  設定無し
Clear Input
  設定無し
Pulse On Compare ( Common for Channel 3 and 4)
  設定無し

PWM Generation Channel 1
  Mode PWM mode 1
PWM Generation Channel 2
  Mode PWM mode 1
PWM Generation Channel 3
  Mode PWM mode 1
PWM Generation Channel 4
  Mode PWM mode 2

PWM Generation ChannelのPulseには、数値を入れることで、TIMのカウントと比較して、カウントよりもPulseの値が大きいときは出力をONにします。
PWM mode2にすることで負論理になります。

こちらも、Counter Periodと同様、ソース内で変更します。覚えておいてください。

TIM1 Mode and Configuration – Configuration – NVIC Setting
すべてにチェックをいれます。

割り込みの設定です。とりあえず使わなくても特に損しないのでチェックを入れておきます。

以上がPWM設定です。次にADCの設定に移ります。

③ADC設定

次のように設定します。

ADC1 Mode and Configuration – Mode
IN1 IN1 Single-ended
IN7 IN7 Single-ended
IN6 IN6 Single-ended

と設定していきます。
図中では、IN2,IN12にもSingle-endedで使っていますが、モータの電流測定は上記3種の予定で、実際には以下のものを観測することを想定しております。
IN1 – モータU相電流
IN7 – モータV相電流
IN6 – モータW相電流
IN2 – VBUS電圧
IN12 – ポテンショメータ出力
(ADC2) IN8 – IC温度出力

なので、今回は駆動用の電流検出のみに目をむけて、ADC1のIN1,7,6のみ説明致します。

ADC1 Mode and Configuration – Configuration – Parameter Settings
ADCs_Common_Settings ~ ADC_Regular_ConversionMode
  設定無し
ADC_Injected_ConversionMode
Enable Injected Conversions Enable
Number Of Conversions 3
External Trigger Source Timer 1 Trigger Out event 2
External Trigger Conversion Edge Trigger detection on the rising edge
Rank 1 Channel Channel 1
Rank 2 Channel Channel 7
Rank 3 Channel Channel 6

とりあえず設定項目が非常に多いので、大切な事だけ書きました。
Injected_ConversionModeは割り込み要求用のADC設定です。
Timer1のTRGO2から、立ち上がりエッジで割り込みがかかり、Ch1,Ch7,Ch6の順に変換します。

この3チャンネルだけはこのようにタイマに連動した割り込みの設定が必要ですが、他のチャンネルはRegular_ConversionModeなどに入れて、適当に使えばよいです。

ADC1 Mode and Configuration – Configuration – NVIC Settings
チェックをいれます。

以上が、ADCの設定の説明でした。
あとは自分が使いたいものを増やしたりして、コードを生成すれば良いです。

コード記述編へ続く。

CubeIDE環境でJ-Link関連のものを更新する方法

標準で入っているJ-Link関連の物のバージョンが古いため、
STM32H7でのデバッグでは少し調子が悪そうに動きます。

そのため、今回は無理やりバージョンアップする方法を紹介します。

以下環境です。

IDE
STM32CubeIDE
Version: 1.0.0
Build: 2872_20190423-2022 (UTC)

①J-Linkをインストールする
https://www.segger.com/downloads/jlink/
からJ-link Software and Documentation Pack
のClick for downloadsから、自分の環境にあったものをダウンロード。

インストーラの形式で配布されているので、指示に従ってインストール。

以下、私はWindows環境で
「C:\Program Files (x86)\SEGGER\JLink_V652」にインストールしましたので、
ご自身の環境に合わせて読んでください。

②インストールしたものをCubeIDE環境にコピーする
標準のインストールだと、CubeIDE環境で使われるJLink.exeなどは、
「C:\ST\STM32CubeIDE_1.0.0\STM32CubeIDE\plugins\com.st.stm32cube.ide.mcu.externaltools.jlink.win32_1.0.0.201904160814\tools\bin」
にあります。クソ長いですね。

先程インストールした、
「C:\Program Files (x86)\SEGGER\JLink_V652」の中身を、
「C:\ST\STM32CubeIDE_1.0.0\STM32CubeIDE\plugins\com.st.stm32cube.ide.mcu.externaltools.jlink.win32_1.0.0.201904160814\tools\bin」内にコピーします。

推測ですが、このディレクトリはバージョンによって異なるため、
「C:\ST\STM32CubeIDE_1.0.0\STM32CubeIDE\plugins」内部を「JLink」などで検索すると目的のディレクトリが見つかります。

(念の為バックアップ取っておいたほうがいいと思います。)

以上で、最新のJ-Link SoftwareがCubeIDE内で利用できるようになります。

STM32 CubeIDE環境で、UTF-8に対応する

「ええっ!?このIDEはUTF-8に対応していないの???」

いや、対応はしているんです。対応は。私達が文字を認識できないだけでして…
早速環境の設定をしていきます。

以下、執筆時の環境です。

IDE
STM32CubeIDE
Version: 1.0.0
Build: 2872_20190423-2022 (UTC)

①プロジェクトのUTF-8化
開発したいプロジェクトのプロパティを開きます。
Projectタブ->Propertiesを
(またはWindows:Alt+Enter Mac:Command+I)
を押してください。

適当に画像のようにチェックを入れればOKです。
私はWindowsのほか、Macでも開発をするので、Other:Linuxに設定してあります。

Macの方はここで終わりです。お疲れ様です。内容が無い記事でごめんなさい。
以下Windowsの方。

②フォントを変更する
CubeIDEの標準のフォントは、一部日本語に対応していません

Windowsタブ->Preferences->General->Appearance->Colors and Fontsを開きます。

上図のように、C/C++ Editor Text Fontを、
フォント名をConsolasからお好きなものに変更します。
おすすめはTakao P ゴシック などが読みやすいと思います。

Takaoフォントは、
https://launchpad.net/takao-fontsからTakaoFonts_xxxxx.xx.zip
をダウンロードして、インストールするだけで、Windows環境でも利用できるようになります。

これでコメントアウトが文字化けして困る事もなくなりました。
以上です、お疲れ様でした。

STM32 Nucleo-64 boards(NUCLEO-F446RE) にJTAGで接続する

NUCLEO-F446RE
など、Nucleo-64 boardsには、ボード上にSTLink-V2/1というプログラマ/デバッガが載っていますが、
・デバッグの速度が足りない
とか、
・J-Linkを繋げたい
とか、諸々の都合でJTAGで接続することがあるかと思います。

毎回接続ピンが行方不明になって調べているので、メモとして残しておきます。

結論
先に結論を書きます。みんな細かいことよりさっさと接続関係が欲しいのは理解していますから。

このとき、基板上のST-LinkV2/1にあるCN2のジャンパはすべてオープンにしてあります。

①JTAGのピンについて
J-Linkのデータシート・UM08001によると
以下のようになっています。

細かいことは省略しますが、このJTAG 20-pinのピン配置は、(デバッガのオプション的なピンを除いて)どのデバッガでもほとんど変わりはなく、STLinkV2/V3等でも僅かな違いがあるものの、利用できます。

②JTAGのピンの機能
次のようにつなぎます。

デバッガ側 マイコン側 機能
VTref Vdd target reference voltage
GND Vss GND
nTRST PB4
(NJTRST)
JTAG Reset
TDI PA15
(JTDI)
JTAG data input of target CPU
TMS PA13
(JTMS-SWDIO)
JTAG mode set input of target CPU
TCK PA14
(JTCK/SWCLK)
JTAG clock signal to target CPU
RTCK Return test clock signal from the target
TDO PB3
(JTDO/
TRACESWO)
JTAG data output from target CPU
RESET NRST Target CPU reset signal


参考にしたデータシートは
J-Linkのデータシートのほか、
F405データシートであるDocID022152が参考になります。

②Nucleoボードとのピンの関係
これらより、
3V3,GND,PB4,PA15,PA13,PA14,PB3,NRST
を接続すれば動作することがわかりました。
しかし、Nucleoボードの場合、ピンアサインがめちゃくちゃなので、自分でマイコンピンとの対応を考える必要があります。
以下を使いましょう。
UM1724
P.35には以下のような図があります。これを見て比較するのが楽かと思います。

以上の作業を得て、一番最初の接続関係が導けます。

STM32 CubeIDE環境で、CMSIS-DSPを使う方法

Arm社が提供するCMSIS-DSP Libraryを利用すると、簡単に高速な演算ができます。

できることは、三角関数や平方根だけに留まらず、行列操作、FIRフィルタ・FFT、PIDコントローラ、クラーク変換・パーク変換等、幅広く入っています。

導入することで利用できる関数は以下のページにまとめられています。

https://www.keil.com/pack/doc/cmsis/dsp/html/modules.html

さて、このCMSIS-DSPですが、故・TrueStudioでの環境構築は、わかりやすくまとめられておりますが、CubeIDEでは少し操作する項目が増えておりますのでまとめてみます。

以下、執筆時の環境です。

IDE
STM32CubeIDE
Version: 1.0.0
Build: 2872_20190423-2022 (UTC)
マイコン
STM32F446RE

①ライブラリの追加
STM32Cubeのディレクトリから以下の2ファイルをコピーします。

STM32Cube\Repository\STM32Cube_FW_F4_Vxxxx\Drivers\CMSIS\Lib\ARM\arm_cortexM4lf_math.lib
STM32Cube\Repository\STM32Cube_FW_F4_Vxxxx\Drivers\CMSIS\Lib\GCC\libarm_cortexM4lf_math.a 

これらをプロジェクトフォルダ内にコピーします。

Windows環境でしたらユーザフォルダ内にSTM32Cubeがあるかと思います。
またVxxxxは適宜読み替えてください。

②プロジェクトファイルの設定
CubeIDEの
(プロジェクトのプロパティ)>C/C++Build>Setting>ToolSettings>MCU G++ >Linker>Libraries
の設定で以下の2項目を登録します。
1.Libraries>addから、arm_cortexM4lf_mathを登録
2.Library search path>add>workspace… から、 (先程arm_cortexM4lf_math.aをコピーしたディレクトリ)を選択します。
正しく指定できていれば、 ${workspace_loc:/${ProjName}} となるはずです。

Tips
ファイル名のM4lf_mathのlfはLittle endian,fpuの略。
つまり、M4l_mathやM4b_math(Big endian)のfpuなしのmathライブラリは使う機会があるのか疑問。
また、M7系の上位マイコンでは、
arm_cortexM7lfdp_mathのような(double precision)を扱えるものもある。

③Includeをする
関数を使いたい.c/.cppファイルにて、以下を定義してIncludeします。

#define ARM_MATH_CM4
#include "arm_math.h"
#include "arm_const_structs.h"

定義しているCM4はCortex-M4の略で、
CortexM7→CM7
CortexM4→CM4
CortexM3→CM3
CortexM0→CM0 とマイコンボードによって変更します。
以後、今回利用するCortexM4のみ解説するので、
別のCPUの時は適宜読み替えてください。

③足りないものを追加する
試しにこの段階でビルドしてみましょう。
次のような怒られが発生するはずです。

../Src/main.c:24:10: fatal error: arm_math.h: No such file or directory
 #include "arm_math.h"
          ^~~~~~~~~~~~

(以前のTrueStudio環境では、この段階で勝手に足りないものを取ってきてくれて、ビルドが通った記憶があります。)

いろいろ足りないので、必要なファイルをIncに追加します。

STM32Cube\Repository\STM32Cube_FW_F4_Vxxxx\Drivers\CMSIS\DSP\Include
内にある、
arm_math.h
arm_const_structs.h
arm_common_tables.h
をインクルードできる場所に追加します。
(例えばプロジェクト内のInc)

以上の操作にて、CMSIS-DSPのライブラリが利用できるようになります。
試しに以下のようにmainの内部を変更して、コードを実行してみます。

/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#define ARM_MATH_CM4
#include "arm_math.h"
#include "arm_const_structs.h"
/* USER CODE END Includes */

 /* USER CODE BEGIN WHILE */
  int num = 0;
  while (1)
  {
	  float armsinVal = arm_sin_f32((float32_t)num*2*M_PI/255);
	  float armcosVal = arm_cos_f32((float32_t)num*2*M_PI/255);
	  float sinVal = sin((float)num*2*M_PI/255);
	  float cosVal = cos((float)num*2*M_PI/255);
	  num++;
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

ブレークポイントを打って実行をすると、以下のように動作の確認ができるかと思います。

今回は手抜きをしたのでタイマを動かして動作時間の解析等はしませんでしたが、
タイマを動作させて実行時のタイマ値を読んだりすると面白いかと思います。

Tips
今回は説明の便宜上、必要なものを全てプロジェクトフォルダやIncに入れていますが、別のフォルダにパスを通して、ライブラリに必要なもの一式を入れると見やすくて良いかと思います。