MakefileをC++に対応させる

前回、Makefileでのビルドを使ってLチカをしました。

しかし、MakefileがC++でのビルドに対応していないので、cppファイルがあると読み込めません。

少し変更してC++に対応させましたので、ここに残しておきます。
makefileを以下のように編集します。

######################################
# target
######################################
TARGET = G431RBMakeProj

######################################
# building variables
######################################
# debug build?
DEBUG = 1
# optimization
OPT = -Og
#OPT = -O0

#######################################
# paths
#######################################
# Build path
#BUILD_DIR = build
ifeq ($(DEBUG), 1)
BUILD_DIR = Debug
endif
######################################
# source
######################################
# C sources
C_SOURCES = \
$(wildcard Src/*.c) \
$(filter-out Drivers/STM32G4xx_HAL_Driver/Src/stm32g4xx_hal_msp_template.c \
			Drivers/STM32G4xx_HAL_Driver/Src/stm32g4xx_hal_timebase_tim_template.c,\
			 $(wildcard Drivers/STM32G4xx_HAL_Driver/Src/*.c)) \ #Driverからは使用例のtemplateファイルを除く
			 
# CPP sources
CPP_SOURCES = \
$(wildcard Src/*.cpp) \

# ASM sources
ASM_SOURCES =  \
startup_stm32g431xx.s

#######################################
# binaries
#######################################
PREFIX = arm-none-eabi-
# The gcc compiler bin path can be either defined in make command via GCC_PATH variable (> make GCC_PATH=xxx)
# either it can be added to the PATH environment variable.
ifdef GCC_PATH
CC = $(GCC_PATH)/$(PREFIX)gcc
CXX = $(GCC_PATH)/$(PREFIX)g++	#cpp
AS = $(GCC_PATH)/$(PREFIX)gcc -x assembler-with-cpp
CP = $(GCC_PATH)/$(PREFIX)objcopy
SZ = $(GCC_PATH)/$(PREFIX)size
else
CC = $(PREFIX)gcc
CXX = $(PREFIX)g++	#cpp
AS = $(PREFIX)gcc -x assembler-with-cpp
CP = $(PREFIX)objcopy
SZ = $(PREFIX)size
endif
HEX = $(CP) -O ihex
BIN = $(CP) -O binary -S
 
#######################################
# CFLAGS
#######################################
# cpu
CPU = -mcpu=cortex-m4

# fpu
FPU = -mfpu=fpv4-sp-d16

# float-abi
FLOAT-ABI = -mfloat-abi=hard

# mcu
MCU = $(CPU) -mthumb $(FPU) $(FLOAT-ABI)

# macros for gcc

# C defines
C_DEFS =  \
-DUSE_HAL_DRIVER \
-DSTM32G431xx \
'-D__weak=__attribute__((weak))' \
'-D__packed=__attribute__((__packed__))'
# C++ defines
CPP_DEFS = $(C_DEFS)
# AS defines
AS_DEFS = 


# C includes
C_INCLUDES =  \
-IInc \
-IDrivers/STM32G4xx_HAL_Driver/Inc \
-IDrivers/STM32G4xx_HAL_Driver/Inc/Legacy \
-IDrivers/CMSIS/Device/ST/STM32G4xx/Include \
-IDrivers/CMSIS/Include
# C++ includes
CPP_INCLUDES = $(C_INCLUDES)
CPP_INCLUDES += \
# AS includes
AS_INCLUDES = 

# compile gcc flags # compile g++ flags
CFLAGS = $(MCU) $(C_DEFS) $(C_INCLUDES) $(OPT) -Wall -fdata-sections -ffunction-sections
CPPFLAGS = $(MCU) $(CPP_DEFS) $(CPP_INCLUDES) $(OPT) -Wall -fdata-sections -ffunction-sections
ASFLAGS = $(MCU) $(AS_DEFS) $(AS_INCLUDES) $(OPT) -Wall -fdata-sections -ffunction-sections

ifeq ($(DEBUG), 1)
#CFLAGS += -g -gdwarf-2
CFLAGS += -g3 -O0 -gdwarf-2
#CPPFLAGS += -g -gdwarf-2
CPPFLAGS += -g3 -O0 -gdwarf-2
endif


# Generate dependency information
CFLAGS += -MMD -MP -MF"$(@:%.o=%.d)"

## Generate dependency information
CPPFLAGS += -MMD -MP -MF"$(@:%.o=%.d)"

#######################################
# LDFLAGS
#######################################
# link script
LDSCRIPT = STM32G431RBTx_FLASH.ld

# libraries
#LIBS = -lc -lm -lnosys 
LIBS = -lc -lm -lrdimon
LIBS += -lstdc++

LIBDIR = 
#LDFLAGS = $(MCU) -specs=nano.specs -T$(LDSCRIPT) $(LIBDIR) $(LIBS) -Wl,-Map=$(BUILD_DIR)/$(TARGET).map,--cref -Wl,--gc-sections
LDFLAGS = $(MCU) -specs=nosys.specs -specs=rdimon.specs -T$(LDSCRIPT) $(LIBDIR) $(LIBS) -Wl,-Map=$(BUILD_DIR)/$(TARGET).map,--cref -Wl,--gc-sections

# default action: build all
all: $(BUILD_DIR)/$(TARGET).elf $(BUILD_DIR)/$(TARGET).hex $(BUILD_DIR)/$(TARGET).bin

#######################################
# build the application
#######################################
# list of objects
OBJECTS = $(addprefix $(BUILD_DIR)/,$(notdir $(C_SOURCES:.c=.o)))
vpath %.c $(sort $(dir $(C_SOURCES)))
# list of c++ objects
OBJECTS += $(addprefix $(BUILD_DIR)/,$(notdir $(CPP_SOURCES:.cpp=.o)))
vpath %.cpp $(sort $(dir $(CPP_SOURCES)))
# list of ASM program objects
OBJECTS += $(addprefix $(BUILD_DIR)/,$(notdir $(ASM_SOURCES:.s=.o)))
vpath %.s $(sort $(dir $(ASM_SOURCES)))

$(BUILD_DIR)/%.o: %.c Makefile | $(BUILD_DIR) 
	$(CC) -c $(CFLAGS) -Wa,-a,-ad,-alms=$(BUILD_DIR)/$(notdir $(<:.c=.lst)) $< -o $@
	
$(BUILD_DIR)/%.o: %.cpp Makefile | $(BUILD_DIR) 
	$(CXX) -c $(CPPFLAGS) -Wa,-a,-ad,-alms=$(BUILD_DIR)/$(notdir $(<:.cpp=.lst)) $< -o $@

$(BUILD_DIR)/%.o: %.s Makefile | $(BUILD_DIR)
	$(AS) -c $(CFLAGS) $< -o $@

$(BUILD_DIR)/$(TARGET).elf: $(OBJECTS) Makefile
#	$(CC) $(OBJECTS) $(LDFLAGS) -o $@ #c Link
	$(CXX) $(OBJECTS) $(LDFLAGS) -o $@ #cpp Link
	$(SZ) $@

$(BUILD_DIR)/%.hex: $(BUILD_DIR)/%.elf | $(BUILD_DIR)
	$(HEX) $< $@
	
$(BUILD_DIR)/%.bin: $(BUILD_DIR)/%.elf | $(BUILD_DIR)
	$(BIN) $< $@	
	
$(BUILD_DIR):
	mkdir $@		

#######################################
# clean up
#######################################
clean:
	-rm -fR $(BUILD_DIR)
  
#######################################
# dependencies
#######################################
-include $(wildcard $(BUILD_DIR)/*.d)

前回との差分はこちらをご覧ください。

https://github.com/YutakaNakamura/G431LEDBlinkMakeProj/compare/LEDBlink_with_C…LEDBlink_with_C++

また、main.cを、main.cppとし、cppが正しくコンパイルできている確認として、
次のテンプレートクラスを追加しています。

template<typename T> class mySqrt{
private:
	T mOldVal;
public:
	mySqrt(T pInitVal) {
		mOldVal = pInitVal;
	}
	constexpr T Calc(const T &pInput) {
		T val = (mOldVal + pInput/mOldVal) * (T)0.5;
		mOldVal = val;
		return val;
	}
};

これはニュートン法で平方根の値を求めるようなクラスです。

Lチカメゾットも0.1*√5 =0.2236秒周期に収束するようなLチカをするようにしています。

  while (1)
  {
    /* USER CODE END WHILE */
	float sqrt5 = msqrt.Calc(5.0f);
	int delay = 100 * sqrt5;
	HAL_Delay(delay);
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);
	HAL_Delay(delay);
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
    /* USER CODE BEGIN 3 */
  }

以下にプロジェクトのリポジトリを残します。詰まったときに参考にしてください。

https://github.com/YutakaNakamura/G431LEDBlinkMakeProj/tree/LEDBlink_with_C++

git clone

https://github.com/YutakaNakamura/G431LEDBlinkMakeProj/tree/LEDBlink_with_C/G431RB_Proj -b LEDBlink_with_C++

STM32 CubeIDE環境で、CMSIS-DSPを使う方法

Arm社が提供するCMSIS-DSP Libraryを利用すると、簡単に高速な演算ができます。

できることは、三角関数や平方根だけに留まらず、行列操作、FIRフィルタ・FFT、PIDコントローラ、クラーク変換・パーク変換等、幅広く入っています。

導入することで利用できる関数は以下のページにまとめられています。

https://www.keil.com/pack/doc/cmsis/dsp/html/modules.html

さて、このCMSIS-DSPですが、故・TrueStudioでの環境構築は、わかりやすくまとめられておりますが、CubeIDEでは少し操作する項目が増えておりますのでまとめてみます。

以下、執筆時の環境です。

IDE
STM32CubeIDE
Version: 1.0.0
Build: 2872_20190423-2022 (UTC)
マイコン
STM32F446RE

①ライブラリの追加
STM32Cubeのディレクトリから以下の2ファイルをコピーします。

STM32Cube\Repository\STM32Cube_FW_F4_Vxxxx\Drivers\CMSIS\Lib\ARM\arm_cortexM4lf_math.lib
STM32Cube\Repository\STM32Cube_FW_F4_Vxxxx\Drivers\CMSIS\Lib\GCC\libarm_cortexM4lf_math.a 

これらをプロジェクトフォルダ内にコピーします。

Windows環境でしたらユーザフォルダ内にSTM32Cubeがあるかと思います。
またVxxxxは適宜読み替えてください。

②プロジェクトファイルの設定
CubeIDEの
(プロジェクトのプロパティ)>C/C++Build>Setting>ToolSettings>MCU G++ >Linker>Libraries
の設定で以下の2項目を登録します。
1.Libraries>addから、arm_cortexM4lf_mathを登録
2.Library search path>add>workspace… から、 (先程arm_cortexM4lf_math.aをコピーしたディレクトリ)を選択します。
正しく指定できていれば、 ${workspace_loc:/${ProjName}} となるはずです。

Tips
ファイル名のM4lf_mathのlfはLittle endian,fpuの略。
つまり、M4l_mathやM4b_math(Big endian)のfpuなしのmathライブラリは使う機会があるのか疑問。
また、M7系の上位マイコンでは、
arm_cortexM7lfdp_mathのような(double precision)を扱えるものもある。

③Includeをする
関数を使いたい.c/.cppファイルにて、以下を定義してIncludeします。

#define ARM_MATH_CM4
#include "arm_math.h"
#include "arm_const_structs.h"

定義しているCM4はCortex-M4の略で、
CortexM7→CM7
CortexM4→CM4
CortexM3→CM3
CortexM0→CM0 とマイコンボードによって変更します。
以後、今回利用するCortexM4のみ解説するので、
別のCPUの時は適宜読み替えてください。

③足りないものを追加する
試しにこの段階でビルドしてみましょう。
次のような怒られが発生するはずです。

../Src/main.c:24:10: fatal error: arm_math.h: No such file or directory
 #include "arm_math.h"
          ^~~~~~~~~~~~

(以前のTrueStudio環境では、この段階で勝手に足りないものを取ってきてくれて、ビルドが通った記憶があります。)

いろいろ足りないので、必要なファイルをIncに追加します。

STM32Cube\Repository\STM32Cube_FW_F4_Vxxxx\Drivers\CMSIS\DSP\Include
内にある、
arm_math.h
arm_const_structs.h
arm_common_tables.h
をインクルードできる場所に追加します。
(例えばプロジェクト内のInc)

以上の操作にて、CMSIS-DSPのライブラリが利用できるようになります。
試しに以下のようにmainの内部を変更して、コードを実行してみます。

/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#define ARM_MATH_CM4
#include "arm_math.h"
#include "arm_const_structs.h"
/* USER CODE END Includes */

 /* USER CODE BEGIN WHILE */
  int num = 0;
  while (1)
  {
	  float armsinVal = arm_sin_f32((float32_t)num*2*M_PI/255);
	  float armcosVal = arm_cos_f32((float32_t)num*2*M_PI/255);
	  float sinVal = sin((float)num*2*M_PI/255);
	  float cosVal = cos((float)num*2*M_PI/255);
	  num++;
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

ブレークポイントを打って実行をすると、以下のように動作の確認ができるかと思います。

今回は手抜きをしたのでタイマを動かして動作時間の解析等はしませんでしたが、
タイマを動作させて実行時のタイマ値を読んだりすると面白いかと思います。

Tips
今回は説明の便宜上、必要なものを全てプロジェクトフォルダやIncに入れていますが、別のフォルダにパスを通して、ライブラリに必要なもの一式を入れると見やすくて良いかと思います。